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The Effect of Multiply Reflected Molecules
in Free Molecule Flow Over a General Body. (May 1993)
Gordon Lee Powell, Jr., B.S., Texas A&M University

Chair of Advisory Committee: Dr. Richard E. Thomas

A method was devised and calculations were performed to determine the effects of
reflected molecules on the aerodynamic force and moment coefficients for a body in free
molecule flow. A procedure was developed for determining the velocity and temperature
distributions of molecules reflected from a surface of arbitrary momentum and energy
accommodation. A system of equations, based on momentum and energy balances for the
surface, incident, and reflected molecules, was solved by a numerical optimization
technique. The minimization of a "cost" function, developed from the set of equations,
resulted in the determination of the defining properties of the flow reflected from the
arbitrary surface. The properties used to define both the incident and reflected flows were:
average temperature of the molecules in the flow, angle of the flow with respect to a
vector norr_nal to the surface, and the molecular speed ratio. The properties of the reflected
flow were used to calculate the contribution of multiply reflected molecules to the force and
moments on a test body in the flow. The test configuration consisted of two flat plates
joined along one edge at a right angle to each other. When force and moment coefficients
of this 90° concave wedge were compared to results that did not include multiple
reflections, it was found that multiple reflections could nearly double lift and drag

coefficients, with nearly a 50% increase in pitching moment for cases with specular or



iv
nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation
often had minor reductions in axial and normal forces when multiple reflections were

included. There were several cases of intermediate accommodation where the addition of

multiple reflection effects more than tripled the lift coefficient over the convex technique.
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INTRODUCTION

Satellite and aerodynamics are two words that many people would not usually
associated with each other. In designing satellites, aerodynamics is not generally important
for determining the structure or configuration of the craft. In the highly rarefied gas
present at orbital altitudes, the actual forces exerted on a satellite are orders of magnitude
less than those experienced by aircraft. However, due to the much longer time of flight
for satellites compared to a typical aircraft mission, the cumulative effect of the forces over
time is of great concern.

Concern about the composition and density of the upper atmosphere and rarefied gas
dynamics preceded the space age as aircraft and rockets flew higher and faster. With the
advent of the space age, there was a desire for a better understanding of satellite
aerodynamics because “it will permit accurate predictions of the expected impact locations
of heavy or dangerous payloads, so that attempts can be made to divert them from impact
areas where damage could result or areas that would be embarrassing."! The Rand
Corporation study of orbital decay was initiated soon after a 21 pound chunk of iron and
steel, a portion of Sputnik VIV, fell on a street corner in Manitowoc, Wisconsin in
September of 1962. Today, more important than concerns about debris from reentering
spacecraft, the aerodynamic forces and moments on an orbiting body are of concern for the
designers of the craft for ;1 number of other reasons. The primary motivations are: sizing
the attitude stabilization and control systems, a need to determine orbital re-boost,

determining propellant requirements between service visits, sizing a gyro-stabilization

Journal model is AIAA Journal.



system, and calculating the acceleration environment for micro-gravity experiments. The
space station program, designing Freedom, has many of these concerns.

The flight regime of these orbiting vehicles is known as free molecular flow (FMF).
Free molecular flow is the regime of rarefied gas dynamics where collisions between
molecules in the flow can be ignored when compared to the frequency of collisions between
the flow and the body immersed in the flow. Essentially, the particles reflected from a
surface do not interact with particles in the freestream and therefore do not affect the
incoming flow as they do in continuum flows.

Several aspects of satellite acrodynamics need to be investigated more thoroughly
in order to better predict forces and moments on a craft. Long the primary difficulty of
satellite aerodynamics, modeling the atmosphere at orbital altitudes has become more
tractable with the availability of more accurate data. The next logical area to seek
improvement is in the techniques for estimating the force and moment coefficients on a
body in the atmosphere at orbital altitude. This is especially important with the increasing
complexity of satellite configurations such as the space station Freedom, with its truss
structure and numerous large panels.

It i_s no longer feasible to model all vehicle configurations as if they were simple
convex bodies. Convex bodies are easiest to model in free molecule flow since the transfer
of momentum and energy of the impinging particles can be calculated and then the particles
can be forgotten about. The traditional methods for calculating the aerodynamic forces and
moments in free molecule flow could still be adequate if the body being studied is
configured as a convex surface. A concave surface, on the other hand, allows the

impinging freestream molecules to reflect off one portion of the body and possibly strike



the body again. Each interaction of a gas particle and the surface contributes to the total

force and moment on the body.

Background

In any study of free molecule flow of gas, there are three main flow parameters that
should be kept in mind. One of the most important parameters is the Knudsen number,
Kn, based on the mean free path. The mean free path is the average distance that a
molecule travels between collisions with other particles in the gas. The Knudsen number
is defined to be \/I, where X is the mean free path, and / is some characteristic length. For
interior flows, the characteristic dimension is often taken to be the diameter of the channel.
In the case of exterior flows, the characteristic length may be the overall length of the body
about which the flow is being studied. Another important parameter is the molecular speed
ratio, S. The speed ratio is similar to the Mach number, but applicable to the molecular
flow of gases. S is the ratio of the macroscopic mass velocity of the gas to the thermal
velocity of the gas particles. The third parameter to be considered is the temperature ratio.
TJT; is the ratio of the body wall temperature to the incident freestream temperature.

The mean free path, so critical for defining the free molecule flow regime, is related
to the atmospheric density. For a constant gas temperature and composition, the mean free
path is inversely related tc.) density. Like density, the variation of mean free path in the
atmosphere can be crudely modeled as exponential with altitude. AAt standard conditions,
the mean free path is about 6 X 10° cm, and at orbital altitudes of 400 km it is roughly 1

X 10* m.



The field of gas dynamics is further subdivided by consideration of the Knudsen
number. There are three flow regimes that are generally considered. For cases where the
Knudsen number is much less than unity, ranging from the inviscid limit of 0.0 up to about
0.1, the flow is in the continuum region. The continuum region is that flow regime that
encompasses "normal” aerodynamics. The gas behaves as a continuum and it is very
difficult to evaluate the effects of individual gas particles or molecules. When the Knudsen
number is near 1.0, aerodynamic processes are termed transition or slip flows. Under
those circumstances, the normal boundary layer assumption of zero velocity at the body
surface may no longer apply. In this slip flow, the boundary layer is still in existence, but
the gas velocity at the wall is greater than zero. The third regime, and the one of interest
in the present work, is free molecule flow. Free molecule flow is generally defined as a
flow with a Knudsen number much greater than 1.0. Because the incident and reflected
flow do not interact with each other, the total flow may be analyzed by a superposition of
the two streams.

Since all the momentum and energy transfer occurs directly on the body surface,
it is necessary to know how a particle interacts with a surface. Accommodation coefficients
are commonly used to describe the fraction of momentum and energy transferred to a body
by a colliding molecule. The forms of the¢ energy, normal momentum, and tangential

momentum accommodation coefficients to be used in this study are:
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where E,, P, and 7, are fluxes on the surface of the incident energy, tangential momentum,
and normal momentum. E, P,, and 7, are the fluxes at the surface due to reemitted
molecules, and E,,, P, are the fluxes of molecules that are in Maxwellian equilibrium with
the wall.?

For modeling the rarefied gas environment, the distribution of velocities is

commonly considered to be Maxwellian®:
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The freestream flow is assumed to be a drifting Maxwellian gas, striking a surface of

arbitrary (but known) accommodation «, o, 0,:
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Where the velocities of the molecules, £, are considered to be a superposition of the

macroscopic mass velocity, U, and the random thermal velocity, c.
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In addition, the flow reemitted from the surface is also assumed to take on a drifting

Maxwellian distribution.
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Previous Work

The study of free molecule flow, although it has numerous high-tech and modem
applications, is by no means a new field of study. Some of the earliest works involving
modern rarefied gas flow were carried out by James Clerk Maxwell and his
contemporaries. Maxwell was the first to investigate gas flows with large mean free paths
and one of the first to put an understanding of rarefied flows of gas to work, explaining the
effects of Crooke’s radiometer and rarefied gas flows in capillary tubes. Perhaps the most
important assumption he made with regard to free molecule flow was to break up the
reflected flow from a surface into two components. A fraction, f, of the particles are .
reflected in a manner that transfers all of their tangential momentum to the surface, so the
reflected flow would not have any net velocity parallel to the surface. The remaining

fraction, 1-f, reflects in a mirror-like fashion, transferring only normal momentum to the



surface and not affecting the component of velocity parallel to the surface.*

The two components of flow that are usually considered today are specular and
diffuse reflection. In specular reflection, the incident flow is unaffected in the direction
parallel to the surface and the direction of the flow perpendicular to the surface is changed
in direction only. The magnitude of velocity perpendicular to the surface is unchanged.
For diffuse reflection, the incident flow is completely accommodated to the surface
conditions. The reflected particles leave the surface in a uniform distribution with no net
motion parallel to the surface.

Knudsen was also an early contributor in the field. In L.B. Loeb’s book, The
Kinetic Theory of Gases, 1934, he references work done by M. Knudsen, published in
1909, on the effusion of gases through a hole in a thin diaphragm.’® In that work, he
developed the cosine distribution for the direction of molecular flow emitting from a point.
Knudsen is also attributed by Singer as having developed the idea of diffuse reflection.®
In the same paper, the idea of mirror or specular reflection is cited as being due to
Newton. Singer was the first to detail the free molecule transfer of energy of the internal
degrees of freedom of diatomic molecules. -

Many of the early studies of free molecular processes were for flows at low speed
and for iﬁtemal flow configurations. The results of this work were applied in vacuum
processes and to flows through ducts and orifices.

A.F. Zahm coined the term Superaerodynamics to refer to flight in conditions of
high Mach number, high altitude and hence low density, and was one of the first to
consider the high speed molecular flows that would be found by advanced vehicles in high

altitude flight.” Sanger, in his paper referenced above, was also one of the early



investigators of high speed rarefied gas flows. His work included calculation of the drag
of a normally inclined flat plate in a flow of finite speed ratio.

However, most of the advances in free molecule flow at high speeds were made
after World War II. This was the period of the "perfection” of the rocket engine, and the
beginning of an era in which free molecule flow became of practical concern.
Superaerodynamics was no longer just in the realm of the theorist. Tsien’s 1946 paper
considered the molecular flow at large freestream Mach number over an inclined flat plate.
As Tsien noted, the greatest simplification of free molecule flow over continuum methods
was that "one need not consider the distortion of the Maxwellian distribution due to the
collision of the re-emitted molecules with the molecules in the stream."®

The introduction of a thermal accommodation coefficient is attributed to

Smoluchowsky and Knudsen. The coefficient is defined by:

_ dE,-dE,
* " gE -dE,

where dE; and dE, are energy fluxes incident on and reemitted per unit time from a
differential element of area. The value of dE, is the flux of energy corresponding to a flow
of reemitted molecules with a Maxwellian distribution with a temperature, 7, equal to the
wall temp;:rature. In a slight change from Maxwell’s method, Schaaf and Chambré
introduce both a tangential and normal momentum accommodation coefficient in parallel
to the energy accommodation, since a single parameter, like f, may not be sufficient to

describe the reflection process adequately.’
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where 7 and p are the tangential and normal components of momentum.

Numerous investigations were carried out in the post war period, but nearly all the
work involved flow over bodies that are convex. Schaaf and Chambré, in "Flow of
Rarefied Gases", provide a table of works exploring flow around plates, cylinders, spheres,
cones, ogives, ellipsoids, and composite bodies. Sentman produced a very thorough paper
that very clearly demonstrated how to calculate the force and moment coefficients on a
complex body made up of elements including flat plates, circular cylinders, cone frustums,
and spherical segments.!® He notes that his equations account for shielding such as the
back surface of a cylinder by the front surface, but not shielding of one element by another,
so that care must be taken in their application.

Sentman’s work at Lockheed was followed by the development of a computer
program at Lockheed Missiles & Space Company’s Huntsville Research & Engineering
Center. This orbital aerodynamics program, which added the ability to account for mutual
molecular shadowing, used Sentman’s equations to allow the calculation of the aerodynamic
forces and moments on & complex vehicle shapes.'" Tt is still in use today, and this
research endeavors to expand the accuracy and utility of the program.

It was not until the late 1950’s and early 1960’s that external flow over concave
shapes began to appear in the literature with any regularity. Ira Cohen and Moustafa

Chahine were among the first to tackle the problem. Cohen investigated the flow into an
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open hemisphere with diffuse reflection of molecules.”? Chahine studied specular
reflection and partial accommodation in an infinite cylindrical surface and in a spherical
segment.'?

Additional work on the free molecule flow over a general concave body appears in
Kogan and also in Patterson. Kogan presents a thorough but nonapplied derivation of the
integral equations for flow over a concave surface and includes some data from other
investigations.'* Patterson also touches on the problem of concave surfaces, but limits his
investigation to the application of rarefied flow in pipes.'®

Bird considers flows with multiple reflection and states their importance to external
flows past bodies of complex geometry. He notes that the Fredholm integral equation of
the second kind that arises in the solution of this problem is necessarily solved numerically.
He does discuss in detail the application of the test-particle Monte Carlo method to flows
around geometries that are too difficult to calculate analytically. He demonstrates the
Monte Carlo method for a circular tube flux problem.'

Koppenwallner also included some aspects of flow over concave surfaces in his
work. He chose not to investigate the full effects of multiple reflections on a concave
surface, but did include the effect he calls "screening” on concave elements. His results
are exact %or the case where T,/T,, = 0 and S, = oo, but can be used as an approximation
for cases with /T, < 1 and §, > > 1.7 A note should be made about the difference
of shielding and screening. Shielding is when a portion of the body is positioned directly
between one part of the body and the direction of the mass velocity vector. Recognizing
that the incoming flow has a distribution of directions based on the thermal velocity of the

gas, shielding is when a portion of the body blocks flow to another part of the body from
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directions other than the mass velocity.

Objectives

The calculation of the effects of multiple reflections for a general body in free
molecular flow is a problem that has been identified and considered for many years. The
problem has been found to be difficult in both the analytical and numerical fields. Analytic
solutions for the problem involving fairly simple geometries have been found by several
researchers. However, an analytic closed form solution for a general geometric body has
not been developed, since the integration over an arbitrary body is difficult or impossible.
Previous works have concentrated on simple geometries such as L-shaped or flapped flat
plates, hollow semicylinders, and hollow hemispheres.

In addition to difficulties resulting from geometry, most works assume specific
values for the surface accommodation coefficients. The most common assumptions are
diffuse reflection, followed by specular reflection. Accommodation coefficients have values
of 1.0 for diffuse reflection, indicating that the molecules are reemitted from the surface
with a Maxwellian distribution of speeds but no mass velocity parallel to the surface. The
molecules 'have a mean temperature equal to that of the wall. The assumption of specular
reflection indicates that no energy accommodation takes place and that tangential
momentum of the particlés is not changed. The normal momentum does not change in .
magnitude but the direction is reversed. For specular reflections, all three accommodation

coefficients are defined to be zero.

Another difficulty encountered when dealing with the problem of multiply reflected
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molecules is the question of how the particles interact with a surface, or more precisely,
the behavior of the particles leaving a surface after impingement. When convex bodies are
considered, the only concern is the momentum and energy transferred to the surface.
There is no need to know the eventual disposition of the reflected particles. However,
when including the effects of reflected particles on concave bodies, the momentum and
energy properties of the reflected particles are critical because it is possible for those
molecules to strike a secondary surface and impart further momentum and energy transfer
~ to the surface.

Once the behavior of the reflected particles is determined, a way must be developed
to implement that information. For a general concave body, the flow reflected from a
surface element may strike the body again in another location. Any element on the body
may see a combination of previously reflected and freestream flows striking the surface.
A problem when considering multiple reflections is that some particles may strike the
surface only once, while others may strike the surfaces twice or even many times.

In this research, a method for numerically determining the distribution of reflected
momentum and energy for a general body with arbitrary accommodation is presented. The
ability to calculate the reflected distributions, and hence possibly the secondary collisions,
leads to a more physically "exact" method of calculating the force and moment coefficients
on an arbitrary body with arbitrary values of the accommodation coefficients. An existing
computer program, the Lockheed Orbital Aerodynamics Computer Program, is updated to

o
include the effects of multiple reflections in the calculation of free molecule aerodynamic

forces and moments.
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DETERMINING THE REFLECTED FLOW PROPERTIES

The first objective was to determine the properties that defined the flow of reflected
particles from a surface. The initial work and ideas for the task were produced by Mr.
Steve Fitzgerald under the auspices of a NASA Johnson Space Center program to improve
the aerodynamic modeling of the space station Freedom. Fitzgerald realized that the three
expressions defining the momentum and energy accommodation coefficients were
expressions of the conservation of normal and tangential momentum and energy. The

coefficients were defined as:

E-|E P-|P .
o = i | rI , Un - i | rl , o = i r (6)
E-|E,| P-|P,] " 7

The equations were simply rearranged and set equal to zero such as:

0=(1-0)7, - |7,
0 =(l-0)P, +a,|P,| - |P,] )
0 =(1-a)E + «|E,| - |E,|

By substituting the gas kinetic expressions for each of the fluxes into equations (7) above,
a system of three equations was produced. A more detailed explanation and derivation is
shown in Appendix A. Given defining information about the incident flow upon the surface
such as T, §,, ¥;, and complete knowledge of the surface, geométry and accommodation
coefficients, the system becomes one of three equations with three unknowns.
Unfortunately, because of non-linearities like the error function, the system cannot be

solved by analytic methods.
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However, because it is possible to put fairly definite and reasonable bounds on the
unknowns and because it is possible to make a fairly good initial guess at a solution, a
simply constrained, non-linear optimization technique is readily applicable. Setting each

of the equations equal to F|, F,, or F; respectively:

F, =0 =(-0)7, - |7,
F, =0 = (1-0)P, + 0,|P,| - |P| ®
F, =0 = (1-0)E, + a|lE,| - |E|

It is necessary to form an objective function from F,, F,, and F; that can be minimized:

1= 1F + B + F] ©)

To insure that each of the individual equations, F, independently approach zero without
simply summing to zero, each term in the cost function is squared.

The objective or "cost” function can be solved by a nonlinear optimization
technique. J can be minimized given the input values of o, 0,, o, T, ¥, S,, v, and T,.
These quantities are known from material properties, atmospheric data and the geometry
of the proialem. The constraints are simple bounds on the variables 7,, ¢,, and S,. T, is
bounded by the lowest and highest of the incident and wall temperatures. y, is bounded
to keep the reflected velocity directed out of the surface, and not into it. S, is bounded by
zero and the incident speed ratio, S;, for most usual cases of accommodation.

A commercial Fortran optimization routine was utilized to take advantage of an

existing and reliable optimization scheme. The double precision routine will minimize a
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function of N variables subject to bounds on the variables using a quasi-Newton method
and a user-supplied gradient. Optionally, a different commercial routine may be used for
the optimization. This routine will also minimize a function of N variables subject to
bounds on the variables using a modified Newton method and a user-supplied Hessian.
The initial guesses for optimization are simple functions of the freestream conditions
and the accommodation coefficients. The purpose of a set of calculated initial guesses is
to provide a beginning point for the optimization search that is closer to the solution than,
say, the incident conditions. A set of guesses that is deemed to at least approximate a
likely solution will possibly help avoid local minima in the search for a global minimum
and reduce the number of search_steps needed. The set of initial guesses that seemed to

provide the most consistent results for all combinations of accommodation was:

guess = Tx + a(Tw—Ti)
Vyuurs = @ + ¥, (1-a) (10)
S = (1-a) 8,

guess

Successful minimization of the cost function results in the desired values of ¥, S,,and T,
necessary for the determination of the distribution of the stream reflected from a surface.
When a global minimum is found, the value of the cost function should be Very near zero.
For the cases run in this investigation, the cost function at the location of a solution was
often in the neighborhood of 107° to 10, although it was occasionally as large as 10,
For comparison, the cost function evaluated with the initial guesses (i.e. at the start of
optimization) may be as large as 10%.

Successful minimization of the cost function is not automatically assured, even with

a "good" set of initial guesses. The choice of a set of accommodation coefficients to
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describe a surface is not really an arbitrary matter, but a material property. So, a poor
choice of accommodation coefficients may lead to a set of equations that have no solution--
can not be minimized successfully. Appendix B discusses the selection of accommodation

coefficients and the successful determination of the properties of the reflected flow.



17

APPLICATION OF MULTIPLE REFLECTIONS

Since in free molecule flow the gas molecules do not interact with one another but
only with the surface, the flow of incident and reflected particles can be appraised
separately and the results summed to calculate the cumulative effect. With that in mind,
it was decided that the best way to compare the forces on a body with and without
consideration of multiple reflections was to continue to use the Lockheed Orbital
Aerodynamics Program and add the necessary sections of code to calculate the contribution

from multiple reflections.

Orbital Aerodynamics Computer Program

The Orbital Aerodynamics Computer Program is a computer code written in the
Fortran language that can obtain aerodynamic force and moment coefficients for any
complex vehicle, symmetrical or asymmetrical, at any vehicle angle of attack or roll, or
combination of both. The code handles complex vehicles by regarding each composite part
(subshape) of the vehicle as a separate body. The code can handle mutual shadowing of
subshapes .and can model vehicles using cylinders, cones and cone frustums, circular plates
and rings, rectangular plates, right-angled triangular plates, and spheres. Based on a user
input mean free path for each altitude case, the Knudsen number is calculated and force and
moment coefficients are calculated as required by the flow regime. Rarefied continuum
flow utilizes modified Newtonian theory. The transition regime makes use of an empirical
relation that was developed to approximate experimental data. The FMF regime uses the

standard formulations of free molecule theory, and Sentman’s equations in particular.
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The FMF calculations are carried out using the general force equation:

4 . L dfogekent) + @-o)v] [ v(1 +erfyS) + —exp(-ysY)
dA Aref ’ K Sy«
(2-0) ol| T Jr 1
I +erfyS)+ 2 | 22 | VT (1 +erf —exp(—v2S?
+2S2(+f€=1r5)+2 T S(+*YS)+S2 p(-7'S%)

where k, [, t are direction cosines between the local coordinates and the desired force
direction. e, v, n are direction cosines between the local coordinates and the mass velocity
vector. The contribution from the reflected particles can also use the same force
calculating routines. The key is to use the correct direction cosines for the above equation.
Instead of the mass velocity vector, the reflected velocity vector (determined from the

optimization process) can be used.

Assumptions for Reflected Flow

Several basic assumptions were made for the modeling of the reflected flow. The
most severe is that only one interaction of the reflected molecules was considered. If the
reflected particle were to strike the surface and reflect again onto another part of the
configuration, that effect would not be included. The test configuration was designed to
make the possibility statistically insignificant, except for cases near pure diffuse reflection.
However, in purely diffuse reflection, the first interaction with the surface would result in
a particle having a temperature equal to the surface, and no mass velocity relative to the
vehicle. Any further interactions with the surface should not be significant, especially

when the wall temperature is markedly less than the incident temperature.
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The parameters that were input to the OA code to define the flow regime were
chosen to represent conditions in low earth orbit. For the test cases, the temperature ratio,
T,JT,, was 0.25. The incident speed ratio, S, was chosen to be 7.5, and a mean free path
of 10,000 units insured the applicability of free molecule flow. A value of 1.1 was chosen
for the ratio of specific heats for the gas, v. The OA code requires input of a reference
radius for the calculation of the reference area. The radius used for this investigation was
0.5642, corresponding to the radius of a circle of area 1.0.

The mass velocity vector of the reflected flow was also assumed to stay in the same
plane as that defined by the incident velocity and the normal to the surface, consistent with
the reflection model used. By limiting the freestream velocity to the X,Y plane, the test
is kept symmetrical about the X,Y plane and side force (Cy), rolling moment (C,,z), and

yawing moment (C,,,) are all held to 0.0.

Description of Test Configuration

The configuration used to test the multiple reflections code could be called a
concave wedge. The model consists of two square flat plates, each with unit area, located
at right angles to each other with one edge of the first plate next to one edge of the other
plate. The configuration is defined to be at 0° angle of attack when the bisector of the
angle between the plates is directed straight into the flow. The origin of the global
coordinate system is at the center of the wedge, located at the intersection of the bisector
and a segment joining the centers of the two flat plates. The global X coordinate direction

is in the opposite direction of the bisector of the wedge, and the Y coordinate is "up”. The
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Z coordinate direction completes the right hand system by being parallel to the corner joint
of the plates. Figure 1 shows the test configuration and coordinate systems. Figure 2

shows more clearly the way subshapes were used to model the concave wedge.

[\

Fig. 1 Global coordinate system and axis
with relation to freestream velocity vector. 1 / -

Fig. 2 90" wedge test configuration
geometry and local coordinate systems
with subshape and element numbering
scheme.

Every surface of the configuration that is exposed to flow must have a subshape
assigned to it. To model the flow over a flat plate with both sides exposed to the flow
requires two rectangular subshapes: one for the top surface and one for the bottom. By
restricting the investigation to a range of angles of attack from 0° to 45°, some
simplification of the model takes place. Only three subshapes are required, one (plate I)
on the top half of the wedge, and two (plates II and III) on the bottom half. For reasons
discussed later in this report, it was not necessary to continue the range of angle of attack
beyond 45°. Although it would be valid to use the concept of this work in angles of attack

greater than 45°, the present means of application renders the method invalid for that range
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of angles.

Each subshape is further divided into area elements for calculating force and
moments. The Orbital Aerodynamics (OA) code calculates the incremental forces for each
element and sums them all to give the final values of force and moment coefficients. The
values calculated by the OA code are stored so that the contribution from multiple
reflections may be added to them. The idea is to cycle through all elements of each
subshape and determine the reflected flow from that point to every other element of the
other subshapes.

There are several ways to cut down on the number of element to element cases that
must be checked. First, since all the subshapes are flat or convex, it is assumed that no
reflected flow from one element will strike another element on the same subshape. Second,
if the element is receiving no incident flow from the freestream, then it will not send any
reflected flow to other subshapes. Third, by testing the dot product of the normal vectors
from two elements, it can be determined if it is physically possible for flow to go from the
outer surface of one element to the outer surface of the other. Elements of flat subshapes
can all share the same coordinate system, translated to the center of each element, thereby
cutting down on the number of coordinate system rotations that must be calculated, as in

a cylindrical or conic subshape.

Determination of Reflected Particle Flux Distribution

Since the reflected flow is defined by a direction vector away from the point of

reflection, calculating the effects on a secondary element that does not lie directly on that
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vector could be a difficulty. Fortunately, S. Nocilla developed a model for the re-emission
of molecules from a surface in free molecule flow."* This re-emission law is the key to
the application of multiple reflections to free molecule flow. Nocilla derived what he called
the "intensity" of reflected flow in any direction from the reflective surface. The intensity
is the number flux of particles in an elementary solid angle d{? divided by the total number

flux of particles emitted from an area element:

()
) - N(_’
r Nr
2
@ - SRS o+ Foo) (12)

*x(o,
where:

cosar = sinf_sin© cos¢ +cosf,cosO
o, = 5,c08,

x(0,) = exp( -0?) + 7% (1 +erfo)
X = s,0055,

FX) =X+ =2CX, +X)(1 +erf X Jexp X’
and it follows that:

j 015"’ ae = 1
According to this model, the re-emitted molecules are in Maxwellian equilibrium
with a translational velocity, U,. Figure 3 shows the coordinate system for the velocities
and Fig. 4 shows how the intensity could be integrated over a region in space to determine
the particle flux from an elemental area to that region in space. An attraction of the
Nocilla model is its simplicity. However, it is also quite accurate at predicting the
reflected distributions, at least for the particle energies investigated by F. C. Hurlbut,

which were used for comparison by Nocilla. The experimental results were taken from
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Hurlbut’s 1959 Rand report detailing the projection of nitrogen molecular beams on lithium

fluoride crystals.

2

o) d()

14
|
| |

{ t x
d4
dA / Fig. 4 Incident and reflected velocity
x vectors for a surface area element.

Fig. 3 Geometry used to define elementary
solid angle for integration of Nocilla’s
intensity.

The intensity of the reflected flow was integrated over the area of each secondary
element that might receive reflected flow from the primary element. A simple two
dimensional quadrature integration from a commercially available math subroutine library
was employed. The integration was performed in the azimuthal and elevation directions
of a spherical type coordinate system.

The limits over which the intensity was integrated for each secondary element were
determined by finding the four vectors from the center of the primary element to each of
the corners of the secondary element. By comparing the directions of the corner vectors,
two of the corners were chosen as the limits for the azimuthal integration. The limits for
the elevation integration were then found as functions of the azimuthal location along the

edges of the secondary element.
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The force and moment routines from the original Orbital Aerodynamics Program
could be used for the reflected flow as well as the freestream, with several minor
differences. The correct directional cosines were calculated for the reflected flow and
desired force directions. The force coefficient calculated by the routine had to be further
modified by two factors: the intensity, and a geometric factor. The value of the intensity,
integrated over the region in space occupied by the secondary element, is the first factor.
A ratio of the primary to secondary elemental areas, each multiplied by the cosine of the
angle between the normal vector and the flow direction coming into the element, is the
second factor. This geometric factor accounts for the difference in cross sectional area
each element presents to the flow.

These calculations produced the incremental force coefficient added by the
consideration of multiply reflected molecules. The resultant incremental forces were stored
and, after all elements were evaluated, were summed with the forces and moments from
the convex results produced by the old code. The output portion of the code was altered

to provide listings of both the convex and concave results.
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RESULTS AND DISCUSSION

The free molecule flow over the concave wedge was evaluated for a speed ratio of
7.5, and a wall to incident temperature ratio of 0.25. Eight sets of accommodation values
were tested, and results compared to the values calculated without consideration of multiple
reflections. In addition to varying the accommodation values, several different cases were
evaluated with different grid resolutions for the numerical integration.

The traditional limiting cases of specular and diffuse reflection were run with grid
sizes of 2x2, 4x4, and 8x8 for the integration. The original Lockheed Orbital
Aerodynamics Code provides exactly the same answers for all grid sizes when flat
subshapes are used, so there is ohly one set of data present for the convex cases. The rest

of the accommodation cases only include the values for 8x8 grid spacing.

Results for « = 0.0, o, = 0.0, ¢, = 0.0

There were significant increases in the axial and drag coefficients with specular
reflection that should be noted. Table 1 contains the output coefficients for the fully
specular case. The axial force coefficient for the specular case increased by an amount in
excess of 2.51 when the vehicle was at an angle of attack (AOA) of 0°. This was just over
an 87% increase in the coefficient value from the results without multiple reflections. The
effect of multiple reflections diminished with increasing angle of attack, and the results with
and without multiple reflections converged at the 45° AOA case as shown in Fig. 5.
Figure 6 compares the normal force coefficient for convex and concave results. There is

no difference in results for the 0° AOA case, but there is an 89% increase with multiple



26

reflections for the 5° AOA case. The results again converge for the 45° case. At 0"
AOA, the effects of grid size are the greatest. The 2x2 grid results are 2.0% higher than
the 4x4 grid, and the 4x4 grid is 1.2% higher than the 8x8 grid. The different grid sizes

all clearly represented the same trends.

Table 1 Force and moment coefficients for a 90° concave wedge with S, =
15, T/T, =0.25,and a = g, = g, = 0.0, 8x8 grid.

n

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

ACA Ca Cu C, Co Cu ADA Ca Cy C. Co Cu
0 2.8806 o 0 2.8806 0 0 5.3923 0 0 5.3923 0
5 2.8806 .4915 .2385 2.9125 .1542 5 9.2037 .9294 .4723 5.2649 .1694
10 2.8806 .968 .4531 3.005 .3038 10 4.8801 1.6841 .811 5.0984 .2907
15 2.8806 1.4152 .6214 3.1487 .4441 15 4.5467 2.2673 1.0133 4.9786 .3907
20 2.8806 1.8193 .7243 3.3291 .S709 20 4,237 2.6996 1.0876 4.9048 .4852
25 2.8806 2.1681 .7476 3.527 .6804 25 3.9492 2.9879 1.039 4.842 .5748
30 2.8806 2.4511 .6824 3.7203 .7692 30 3.6742 3.1352 .8781 4.7495 .6605
35 2.8804 2.6599 .5267 3.8851 .8347 35 3.4065 3.1497 .6262 4.597 .7438
40 2.8784 2.7896 .2867 3.9981 .8754 40 3.1408 3.0445 .3134 4.3629 .8228
45 2.8555 2.8555 0 4.0382 .8961 45 2.8558 2.8551 -.0005 4.0382 .896
8.00 o0
—— . Lockheed Code
L - — 2x2 grid w/mull. reflections
5.50 4 - —~ — 4x4 grid w/mult. reflections
NI e 8x8 grid w/mult. reflections
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g 350 § \\‘S\"\ E
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- — 2x2 grid w/mult. reflections
250 3 — — 4x4 grid w/mult. reflections
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200 Frrrrrrrr S S — e S T e 1 0.00 Frrrrrrrr T YT S — T .
0.0 100 40.0 50.0 00 100 40.0 500

20.0 0.0 .0 300
Angle of Attack., AOA, (deg) Angle of Attack, AQA, (deg)

Fig. § Axial force coefficient for a 90° Fig. 6 Normal force coefficient for a 90°
concave wedge with S, = 7.5, T,/T, = concave wedge with S, = 7.5, T/T, =

0.25,and a =0, =0, = 0. 0.25,and a =0, =0, = 0.

Because of the interrelatedness of the lift and drag coefficients to the axial and

normal force coefficients, similar effects were expected for lift and drag. Fig. 7 shows the
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variation in lift coefficient caused by the consideration of multiple reflections. The peak
lift coefficient shifted from 25° AOA to 20° when multiple reflections are considered. The
variation of results for the different grid sizes was more pronounced for the lift case than
the axial or normal forces. The 2x2 results were nearly 10% higher than the 4x4 resuits
for the 15° AOA case. The effects of grid size on drag coefficient were similar to the
effects on the axial and normal forces. Figure 8 shows the large increase in drag
coefficient possible when multiple reflections are considered. The 0° AOA case was, of
course, the same as the axial force results for 0° AOA, but the same trend is apparent

throughout the range of angles of attack.

000 5
—— Lockheed Code
1.50 . — 2x2 grid w/mult reflections
— — 4x4 grid w/mulL. reflections -
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Fig. 7 Lift coefficient for a 90° concave Fig. 8 Drag coefficient for a 90° concave
wedge with S, = 7.5, T/T, = 0.25, and wedge with S, = 7.5, T/T, = 0.25, and

a=o0,=0 =0. a=9,=0 =0

As shown in Figure 9, the pitching moment did not have as drastic a change as lift
and drag because of the reflected particles. Interestingly, the pitching moment coefficient
increases over convex results for low angles of attack, but is lower for AOA greater than

10°. The 2x2 grid appeared to have difficulty handling the pitching moments. With only
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two distinct moment arms for this calculation and all the forces applied at those two

distances with a 2x2 grid, it is not really surprising the results weren’t smooth.
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Fig. 9 Pitching moment coefficient for a
90° concave wedge with S, = 7.5, T /T,
=0.25,and o« =0, = 0, = 0.

n T

Results for « = 1.0, 0, = 1.0, ¢, = 1.0

L] T

The output values of force and moment coefficients for fully diffuse reflection are

shown in Table 2. The axial and normal force coefficients, shown in Figs. 10 and 11,

Tahle 2 Force and moment coefficients for a 90° concave wedge with S, =
75, T/T, = 0.25,and a = g, = g, = 1.0, 8x8 grid.

L]

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

AOA C, G . C G C AOA C, Cu C, C, G,
0 2.9737 0 0 2.9737 0 0 2.9597 0 0 2.9597 0
5 2.9518 .256 -.0022 2.9629 .0804 5 2.9378 .2557 -.0013 2.949 .0804

10 2.8866 .5045 -.0044 2.9303 .1583 10 2.8729 .5037 -.0028 2.9167 .1585
15 2.7801 .7382 -.0065 2.8764 .2317 15 2.7667 .7368 -.0043 2.8632 .232
20 2.6355 .9501 -.0086 2.8015 .2982 20 2.6226 .9481 -.0061 2.7887 .2987
25 2.4571 1.1341 -.0106 2.7062 .3559 25 2.4449 1.1311 -.0081 2.6938 .3566
30 2.2504 1.2848 -.0125 2.5913 .4031 30 2.239 1.2806 -.0105 2.5793 .4041
35 2.0229 1.3993 -.014 2.4597 .4381 35 2.0126 1.3935 -.0129 2.4479 .4395
40 1.789 1.4828 -.0141 2.3236 .4573 40 1.7802 1.4749 -.0144 2.3118 .4592
45 1.6178 1.6178 0 2.2879 .4409 45 1.6106 1.6075 -.0022 2.2756 .4432
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were essentially unchanged with the addition of the multiple reflection effects. The grid

size did not affect the multiple reflection effects to a significant extent.
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Fig. 10 Axial force coefficient for a 90° Fig. 11 Normal force coefficient for a 90°
concave wedge with §, = 7.5, T,/T, = concave wedge with S, = 7.5, T/T, =

0.25,and o =0, =0, = 1. 0.25,and a =0, =0, = 1.

The lift coefficient, shown in Fig. 12, had a noticeable percentage change (over
30%) due to multiple reflections in the lower angles of attack. The magnitude of the lift
coefficient for this case only had a maximum absolute value of 0.0144, and the maximum
change was 0.0025. This would be a very small force indeed. The grid spacing had only
a minute t?ffect.

There was only a small reduction in the drag coefficient, as seen in Fig. 13. The
reduction was only about 0.5%. The multiple reflection results for the different grid

spacings were all right at the same values.
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Figure 14 shows the nearly identical plots of pitching moment for the convex and

concave cases. The magnitude of the difference is a maximum of 0.001.
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Results for ¢« = 0.9, ¢, = 1.0, ¢, = 1.0

L | b4

Values for the force and moment coefficients for full momentum accommodation
and energy accommodation of 0.9 can be found in Table 3. Figures 15 and 16 display the
axial and normal force coefficients for this case. The alteration of the energy

accommodation resulted in virtually no change from the fully diffuse case.

Table 3 Force and moment coefficients for a 90° concave wedge with S, =
15, T/T, =0.25,and a = 0.9, 0, = 0, = 1.0, 8x8 grid.

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

AOA ¢, Ca €, Co  Cu AOA C, Cu C, €, Cu

0 2.9737 0 0 2.9737 0 0 2.9646 0 0 2.9646 0
5 2.9518  .256 -.0022 2.9629 .0804 5 2.9427  .256 -.0015 2.9538 .0804
10 2.8866 .5045 -.0044 2.9303 .1583 10 2.8776 .5044 -.0029 2.9214 .1584
15 2.7801 .7382 -.0065 2.8764 .2317 15 2.7712  .738 -.0044 2.8677 .2317
20 2.6355 .9501 -.0086 2.8015 .2982 20 2.6267 .9497 -.006 2.7931 .2983
25 2.4571 1.1341 -.0106 2.7062 .3559 25 2.4486 1.1333 -.0077 2.6981 .3561
30 2.2504 1.2848 -.0125 2.5913 .4031 30 2.2423 1.2834 -.0097 2.5836 .4035
35 2.0229 1.3993 -.014 2.4597 .4381 35 2.0155 1.3968 -.0119 2.4522 .4386
40 1.789 1.4828 -.0141 2.3236 .4573 40 1.7829 1.4786 -.0133 2.3162 .4583
45 1.6178 1.6178 0 2.2879 .4409 45 1.6133 1.6113 -.0014 2.2801 .4423
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Fig. 15 Axial force coefficient for a 90° Fig. 16 Normal force coefficient for a 90°
concave wedge with S, = 7.5, T,/T, = concave wedge with S, = 7.5, T/T, =
0.25,and a =0.9, 0, = 0, = 1.0. 0.25,and a = 0.9, ¢, = 0, = 1.0.

Figure 17 shows the lift coefficient on the concave and convex wedges for angles
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of attack from 0" to 45°. The results with multiple reflections were slightly less than for
the fully diffuse case. The concave results were up to 30% less (in absolute value) than
the convex results. For AOA from 40° to 45°, the concave lift coefficient was still less
than the convex case, where the fully diffuse lift coefficient was slightly greater than the
convex case. The magnitude of the change and the actual value of lift coefficients were
very small, as in the diffuse case. The drag coefficient results, shown in Fig 18, were not
changed significantly from the diffuse case of Fig. 13 for either convex or concave.

Changes were less than 0.5%.
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Figure 19 shows_the pitching moment coefficient results for the wedge. The

concave and convex results were indistinguishable from each other, and from the diffuse

case.
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Results for « = 0.9, 0, = 0.9, 0, = 0.9

The results for the case with all accommodation equal to 0.9 are contained in Table
4. As shown in Fig. 20, the convex axial force coefficient results were nearly the same
as the diffuse case. However, there was a more significant change in the concave results
for this accommodation case. The axial force at 0° angle of attack was reduced from 2.96
to 2.88, a 2.7% change. The normal force also changed with the addition of multiple
reﬂection;. Figure 21 shows, for instance, the increase in normal force coefficient from
1.23 to 1.33 for 25° AOA. This is about a 7.7% increase in the coefficient.

Figure 22 shows the change in lift coefficient due to the consideration of multiple
reflections. When all accommodation values were 0.9, there was a positive lift force,
unlike the diffuse case. The lift was still small in magnitude, 0.065 at 25° AOA for the
convex case. The increase in lift coefficient due to multiple reflections was 0.11 at 25°

AOA, so the percentage increases were very large. At 40° AOA, the multiple reflection
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lift coefficient was 251% greater than the convex result.

Table 4 Force and moment coefficients for a 90° concave wedge with S, =
, = 0, = 0.9, 8x8 grid.

15, T/T, =025,and o = o

Results from Orbital Aerodynamics Code Results with multiple reflect. effects
AGA C, Cy C. o Cu ACA C, Cy C, Co Cu
0 2.9644 0 0 2.9644 0 0 2.8846 0 0 2.8846 0
5 2.9447 2796 .0219 2.9578 .0877 5 2.8658 .3077 .0567 2.8817 .08S52
10 2.886 .5509 .0414 2.9378 .1729 10 2.8095 .6048 .1077 2.8718 .1681
15 2.7901 .8059 .0563 2.9037 .2529 15 2.7176 .8812 .1478 2.853 .2463
20 2.66 1,037 .0647 2.8543 .3254 20 2.5933 1.1269 .1719 2.8223 .3175
25 2.4995 1.2375 .0652 2.7883 ,3883 25 2.4406 1.3331 1768 2.7753 .3798
30 2.3134 1.40146 057 2.7042 .4397 30 2.2652 1.4896 .1575 2.7066 .4319
35 2.1086 1.5254 .0401 2.6022 .4778 35 2.0734 1.5933 .1159 2.6123 472
40  1.898 1.6135 .016 2.491 .4991 40 1.8778 1.6491 .0562 2.4985 .4966
45 1.7416 1.7416 0 2.4629 .4864 45 1.7377 1.7357 -.0014 2.456 .4876

The drag coefficient for the wedge in free molecule flow is shown in Fig. 23. The

convex results were similar to the diffuse case, but the concave results were reduced by

0.08 at 0" AOA (2.7% change).
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Figure 24 shows the concave and convex pitching moment coefficients. The
concave results were just distinguishable from the convex results for angles of attack from

10° to 40°. There was a reduction of up to 0.008 (about 2%) in that range.
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36

Results for « = 0.7, 0, = 0.6, ¢, = 0.6

L ] T

For the test case with energy accommodation of 0.7 and both tangential and normal
momentum accommodation of 0.6 the calculated force and moment coefficients for convex
and concave wedges are displayed in Table 5. Figure 25 shows the results for the axial
force coefficient. The addition of reflected particles increased the axial force from 7% to
10% over most of the range of angles of attack, with the greatest physical change, 0.25
(8.9%), at 15° AOA. The greatest change in normal force coefficient was 0.53 (41%
increase) at 20° AOA, as shown in Fig. 26. The normal force coefficient with multiple
reflections has a more pronounced maximum point at 35°, while the convex coefficient has

no internal maximum in the range of angles of attack from 0" to 45°.

Table 5 Force and moment coefficients for a 90° concave wedge with S, =
75, T/T, =0.25,and a = 0.7, 0, = 0, = 0.6, 8x8 grid.

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

ACA C, Cyn C. Co Cu ADA C, o C, Co C
0 2.9365 0 0 2.9365 0 0 3.1581 0 0 3.1581 0
5 2.9233 .3502 .0941 2.9427 .1099 5 3.1509 .5686 .2918 3.1885 .1359
10 2.8842 .6899 .1786 2.9602 .2165 10 3.1261 1.0839 .5246 3.2668 .2636
15 2.8203 1.009 .2446 2.9853 .3166 15 3.0716 1.5085 .6621 3.3574 .3747
20 2.7336 1.2978 .2846 3.0126 .4073 20 2.9799 1.8272 .6978 3.4252 .466
25 2.6265 1.5477 .2927 3.0345 .4857 25 2.8526 2.0472 .6498 3.4505 .5372
30 2.5025 1.7513 .2655 3.0429 .5496 30 2.6907 2.1686 .5327 3.4145 .59
35 2.3659 1.9035 .2023 3.0298 .5968 35 2.5015 2.202 .369 3.3121 .6241
.40 2.2248 2.0055 .1062 2.9934 .6246 40 2.2961 2.1608 .1794 3.1478 ,6382
45 2.1129 2.1129 0 2.988 .623 45 2.1116 2.1103 -.0009 2.9853 .6233
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Fig. 25 Axial force coefficient for a 90° Fig. 26 Normal force coefficient for a 90°
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0.25,and o« =0.7, 0, = 0, = 0.6. 0.25,and a = 0.7, 0, = 0, = 0.6.

Figure 27 shows the lift coefficient for the test configuration for angles of attack
from 0" to 45°. The increases in the lift coefficient with the addition of multiple
reflections were in the range of 0.3 to 0.4 over most of the angles of attack. The changes
were large in terms of percentage (100% to 200%) because of the low values of lift
coefficient for the convex case. Figure 28 shows the changes in the drag coefficient due
to the addition of multiple reflections. The magnitude of the changes was similar to the
changes in lift coefficient, but because of the large values of convex wedge drag
coefficient, the percentage change was less than 14%. The character of the drag coefficient
was somewhat different for this accommodation case. The drag coefficient for the more
diffuse accommodation cases was a maximum at 0° AOA and decreased regularly for .
higher angles of attack. For this case, the drag coefficient increased for angles of attack
greater than 0° up to 30" and then decreased slightly. The coefficient with concave effects

followed this pattern, but had a much greater decrease from 30" to 45° AOA.



38

350
0.800 5
4 - - ~
3 AT T T~ 9.40 - N
4 4
0.600 3 , AR P N
3 , N , \
’ \ 930 3 ’ \
1 ’ \ 8 4 \
o 0400 3 ’
8] 4 \ 4 , \
o FEELE I \
g R I '
£ S \
= v \
‘g Sa10 g \
3]

? \
= b \
3 D300 -—/'\—A

-0.200 3
3 — ?g“""f C7de 1L refiects 290 Lockheed Code
— -~ 9xB gnd w/mull. reflections — - Bx8 grid w/mull. refiections
-0.400 Frrrrrrrr DAARRAS SR BARASE R (RAARRRERSS e aanl 2.80 Frrrrrrer VUSAASERARRRARRE RS S S PAASARREN AAABEAAS —
00 100 200 300 400 50.0 0.0 10.0 20.0 300 40.0 50.0
Angle of Altack, AOA, (deg) Angle of Attack, AOA, (deg)

Fig. 27 Lift force coefficient for a 90° Fig. 28 Drag force coefficient for a 90°
concave wedge with §, = 7.5, T./T, = concave wedge with S, = 7.5, T/T,A =
0.25,and o =0.7, 0, = 0, = 0.6. 0.25,and « =0.7, 0, = g, = 0.6.

The increase in pitching moment due to the consideration of concave surface effects
is evident in Fig. 29. Changes found in the pitching moment were fairly small, on the

order of 0.05, with the largest absolute increase at 20° AOA. The increase at 20" was

0.059 or 14.4%.
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Results for & = 0.5, ¢, = 0.4, 0, = 0.4

L L4

The case with energy accommodation of 0.5 and momentum accommodation of 0.4
followed the same trends as the cases discussed above. The results are presented in Table
6. The force coefficient in the axial direction for angles of attack from 0° to 45° is shown
in Fig. 30. The increase in axial force coefficient at 0* was 0.80, or about 27.7%. The
27.7% increase was nearly four times the increase found in the « = 0.7 case. The convex
and concave results converged at 45° AOA, as before. Figure 31 shows the coefficient for
the normal force on the wedge. The maximum change in normal force was a 0.69 increase
at20°. The increases at lower angle of attack were higher percentage changes, up to 83%,

but 0.69 was the greatest physical change.

Table 6 Force and moment coefficients for a 90° concave wedge with S, =
7.5, TJT, = 0.25,and a = 0.5, 0, = 0, = 0.4, 8x8 grid.

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

AOA ¢, Cu c, €, Cu AROA C, Cy c, Co Gy
0 2.9179 0 0 2.9179 0 0 3.7256 0 0 3.7256 0
5 2.9091 .3973 .1422 2.9326 .1247 S 3.7078 .7282 .4023 3.7571 .1828

10 2.883 .7826 .2701 2.9751 .2456 10 3.6549 1.3426 .6875 3.8325 .3377

15 2.8404 1.1444 3702 3.0398 .3591 15 3.55644 1.8141 .8323 3.9028 .4564
20 2.7826 1.4716 .4312 3.1181 .4618 20 3.4141 2.1573 .8596 3.946 .546
25 2.7112 1.7545 .4443 3.1987 .5506 25 3.242 2.3856 .7919 3.9465 .6134
30 2.6285 1.9846 .4044 3.2687 .6228 30 3.0433 2.506 .6486 3.8885 .6635

- 40 2.4427 2.2668 1664 3.3283 .7082 40 2.5893 2.4596 .2198 3.5645 .7176

1
1
1
1
35 2.5374 2.1557 .3104 3.3149 .6761 35 2.8233 2.5267 .4503 3.762 .6986
2
45 2.3604 2.3604 0 3.3381 .74 45 2.36 2.3589 -.0007 3.3368 .7141
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The changes in the coefficient of lift are shown in Fig. 32. The addition of multiple
reflections acted to increase the lift coefficient, and move the point of maximum lift from
25° AOA without multiple reflections to around 20° with multiple reflections. The

coefficient was increased a maximum of 0.46 at 15° AOA (124%). There was a 183%

increase in lift at 5° AOA.
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The drag force and pitching moment coefficient results are shown in Figs. 33 and
34. The point of maximum increases in drag and pitching moment were at 15° AOA. The
drag coefficient increased a maximum of 0.863 (28 %) and the moment coefficient increased

a maximum of 0.097, or 27%, due to the concave effects.
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Fig. 34 Pitching moment coefficient for a
90° concave wedge with S, = 7.5, T, /T,
= 0.25,and a = 0.5, g, = 0, = 0.4.

Results for « = 0.3, ¢, = 0.2, 0, = 0.2

Data from calculations of force and moment coefficients for energy accommodation
of 0.3 and momentum accommodation of 0.2 is presented in Table 7. The results for axial
force and normal force coefficients are shown in Figs. 35 and 36. The axial force
coefficient increased by 1.72 with the addition of multiple reflections for an AOA of 0°.
That was a 59% increase.

The normal force coefficient increased about 48% to 2.44 at a 20" angle of attack.

There was significant change in the normal coefficient over the whole range of tested

angles of attack.
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Table 7 Force and moment coefficients for a 90° concave wedge with S, =
7.5, T/T, = 0.25,and « = 0.3, 0, = ¢, = 0.2, 8x8 grid.

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

AOA Ca Cu C, Co Ca ACA Ca Cu C, Co Ca
0 2.8993 0 0 2.8993 0 0 4.6208 0 0 4.6208 0
5 2.8949 (4444 1904 2.9226 .1395 S 4.5289 .8551 .4571 4.5862 .1919
10 2.8818 .8753 .3616 2.99 .2747 10 4.36441 1.5405 .7628 4.5456 .3313
15 2.8605 1.2798 .4958 3.0943 .4016 15 4.1183  2.06 .9239 4.5112 .4321
20 2.8316 1.6455 .5778 3.2236 .5164 20 3.879 2.438 .9642 4.4789 5143
25 2.7959 1.9613  .596 3.3629 .6155 25 3.6354 2.689 .9007 4.4312 .5883
30 2.7546 2.2179  .S5434 3.4945 .696 30 3.3882 2.8203 .74B4 4.3444 6566
35 2.7089 2.4078 4186 3.6 .7554 35 3.1355 2.8377 .526 4.1961 .718
40 2.6605 2.5282 .2266 3.6632 .7918 40 2.8763 2.7521 .2593 3.9724 .7688
45 2.6079 2.6079 0 3.6882 .8051 45 2.608 2.6071 -.0006 3.6876 .80S
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0] Too 2.50 3 e .
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- N i : 4
,gtm- S ;azm- /’
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Fig. 35 Axial force coefficient for a 90° Fig. 36 Normal force coefficient for a 90°
concave wedge with S, = 7.5, T /T, = concave wedge with S, = 7.5, T/T, =
0.25,and o« = 0.3, 0, =0, =0.2. 0.25,and o =0.3, 0, =0, = 0.2.

The results for the coefficient of lift are shown in Fig. 37. The lift calculated by
the convex method was greater than that of the more diffuse accommodation cases, but the
amount of increase due to ;11ultiple reflections is not much different. The coefficientat 15°
AOA increased 0.43, but the percentage change for this accommodation case was only
86%.

Figure 38 shows the drag coefficient of the wedge over angles of attack from 0° to

45°. The maximum increase due to multiple reflections was at 0° AOA, where a change
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of 1.72 (59%) was present. The shape of the lift and drag plots for this accommodation

was comparable to the specular case.

4.50

8

w
g

Drag Coefficient, CD

§
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aaaaagal

—— Lockheed Code 2.50 3 —— Lockheed Code
-0.20 3 _ . Bx8 grid w/mult. reflections — — BxB grid w/mult reflections

~-0.40 +
00 100 200

2.00 e T T
30.0
Angle of Attack. AOA, (deg)

400 S0 0.0 100

Fig. 37 Lift force coefficient for a 90° Fig. 38 Drag force coefficient for a 90°
concave wedge with S, = 7.5, T /T, = concave wedge with S, = 7.5, T/T,B =
0.25,and o = 0.3, 0, =0, = 0.2. 0.25,and o =0.3, 0, =0, = 0.2.

The results for the pitching moment coefficient for the convex and concave wedge
are shown in Fig. 39. Multiple reflections acted to increase the pitching moment for angles
of attack from 0" to 20°. From 20" up to 45°, the pitching moment decreased compared

to the convex case. The increase at 10° was 0.056 (20%), and the decrease at 30° was

0.039 (5.7%).
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Fig. 39 Pitching moment coefficient for a
90° concave wedge with S, = 7.5, T /T,
= 0.25,and o« =0.3, 0, = g, = 0.2

Results for « = 0.1, ¢, = 0.1, ¢, = 0.1

Table 8 contains the output data from the calculations for the wedge in free
rﬁolecule flow with surface accommodation of @ = o, = ¢, = 0.1. The axial force
coefficient is shown in Fig. 40 and the normal force coefficient results are shown in Fig.
41. The axial force coefficient was greatly increased by the addition of multiple reflections

with an increase of 1.92 at 0° AOA. The normal force also had some large increases from

10° to 30° AOA, with the largest increase, 0.82 (47%) at 20° AOA.
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Table 8 Force and moment coefficients for a 90° concave wedge with S, =
7.5, T /T, = 0.25,and o = 0, = 0, = 0.1, 8x8 grid.

n

Results from Orbital Aerodynamics Code Results with multiple reflect. effects

ACA Ca Cn C. Cp Cy AOA C. Cn C, Co Cu
0 2.8899 0 0 2.8899 0 0 4.8157 0 0 4.8157 0
S 2.8877 _4679 .2145 2.9175 .1469 S 4.7108 .9041 4901 4.7717 .2142
10 2.8812 .9217 .4074 2.9975 .2892 10 4.5042 1.62 .8132 4.7171 .3621
15 2.8706 1.3475 .5586 3.1215 .4229 15 4.258 2.161 .9853 4.6722 .466
20 2.8561 1.7324 .651 3.2764 .5437 20 4.0032 2.5552 1.0319 4.6357 .5508
25 2.8383 2.0647 .6718 3.445 .648 25 3.751 2.8186 .9693 4.5907 .6275
30 2.8176 2.3345 .6129 3.6074 .7326 30 3.5015 2.9579 .B8109 4.5114 .6981
35 2.7947 2.5338 4726 3.7426 .7951 35 3.2519 2.9783 .5745 4.3721 .7611
40 2.7695 2.6589 .2566 3.8306 .8336 40 2.9994 2.8902 .286%1 4.1554 .8124
45 2.7317 2.7317 0 3.8632 .8506 45 2.7319 2.7312 -.0005 3.863 .8505
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Fig. 40 Axial force coefficient for a 90° Fig. 41 Normal force coefficient for a 90°
concave wedge with §, = 7.5, T./T, = concave wedge with S, = 7.5, T /T, =
0.25,and a =0, = g, = 0.1. 0.25,and o =0, = 0, = 0.1.

n n

Figure 42 shows the lift coefficient for the wedge at this accommodation case. The
largest increase was 0.43 at 15°, but the increase in lift coefficient between 0° and 15° was
near 100%. The angles (;f attack greater than 30" did not show nearly as great an increase.
The angle of attack of maximum lift coefficient also shifted to lower AOA for the concave
case.

The drag coefficient is shown in Fig. 43. The increase in drag was dramatic, and

nearly as great as for specular reflection; the drag coefficient at 0 changed from 2.89 to
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4.82 (67%). Also significant was the fact that with increasing angle of attack, the concave

drag coefficient always decreased while the convex drag coefficient always increased.
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Fig. 42 Lift force coefficient for a 90° Fig. 43 Drag force coefficient for a 90°
concave wedge with S, = 7.5, T./T, = concave wedge with S, = 7.5, T /T, =
0.25,and @ =0, = g, = 0.1. 0.25,and a = 0, = o, = 0.1.

K 7

The pitching moment is shown in Fig. 44. Only the accommodation cases with «
= 0.5 and o, = ¢, = 0.4 and the fully specular case had larger absolute value changes in
the pitching moment. The intermediate accommodation case only had an increase in the
pitching moment, but this case was like the specular case that had an increase at low angle
of attack and a decrease at higher angles of attack. The largest increase was 0.073 at 10°

AOA, or about 25%.
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n

Discussion

There were several points that deserve to be discussed further. A major point to
note is the difference between the cases where a body is considered to be convex (no
multiply reflected particles) with full diffuse accommodation and the case calculated here
with a concave body (including multiple reflections) and all accommodation coefficients set
equal to 0.9. It is common practice for diffuse reflection without multiple reflection of
molecules to be used to model vehicles in free molecule flow. However, from most
available data, 0.9 is probably closer to an actual value of surface accommodation for many
engineering surfaces. As shown in Figs. 22 and 23, there could be a significant change in
forces produced for these models. Also, it is not always intuitively obvious whether the
addition of multiple reflections will increase or decrease a force or moment applied to a

complex configuration.

The range of angles of attack was chosen to be from 0° to 45°. It was obviously
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not necessary to evaluate angles less than 0" because of the symmetry of the test
configuration. At 45°, the #I plate is perpendicular to the flow and plate #II is edge-on to
the flow. Because a plate that is edge on to the flow can have momentum transferred to
it by the flow, it was necessary to include subshape #III on the underside of plate #II to
balance the normal force on plate II by diffusely reflecting particles. Beyond 45°, the
bottom subshapes, II and III, would shield subshape I from some incident flow. Because
of the right angle between the plates, specular flow from plate I would never hit subshape
II and the results should be the same as the convex case. At the other extreme of diffuse
reflection, particles reflected from subshape I would not likely have a measurable effect on
subshape II since we have seen the small contribution that diffusely reflected particles have
on force and moment coefficients. To actually include these cases in the study would
require a new method of checking for shielding of subshapes from the reflected flow from

other elements.
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CONCLUSION

Force and moment coefficients for a 90" wedge, in free molecule flow with speed
ratio 7.5, with and without considering multiply reflected molecules were reported. The
wedge was composed of two square flat plates of unit area joined at one edge with right
included angle. The traditionally limiting cases of specular and diffuse reflection showed
that multiple reflection of molecules could have a very significant effect for specular
reflection, but almost no measurable effect in the case of diffuse reflections. In addition
to the limiting cases, several cases of intermediate accommodation were also calculated.
The magnitude of effect of the multiple reflections for the intermediate accommodation
cases was more significant for accommodation values near the specular range. However,
even for the nearly diffuse case with a = o, = 0, = 0.9, modeling a wedge as concave
resulted in significant changes from the convex results.

For the case of specular reflection, the axial force and drag coefficients increased
by an amount in excess of 2.51 when the test configuration was at an angle of attack
(AOA) of 0°. This was just over an 87% increase over the coefficient value of the results
without multiple reflections. The effect of multiple reflection diminished with increasing
angle of atﬁck, and the results become the same at 45° angle of attack. The lift coefficient
remained the same at 0° and 45° angles of attack, but increased for angles of attack in
between.

In the nearly diffuse case with « = ¢, = ¢, = 0.9, which may represent actual
conditions for engineering surfaces at orbital speeds, there were large percentage increases

in the lift coefficient (150% to 250%). The actual magnitude of lift coefficients for that
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case are quite low (up to 0.17) so the percentage change may be a bit misleading.

The method used for calculating the effects of multiple reflections could enable more
accurate results for the calculation of force and moment coefficients on vehicles in low
earth orbit. The method of optimization to solve for the defining parameters of the
reflected flow could be applied to any type of free molecule calculation scheme, including

the more modern and prevalent test particle Monte Carlo method.
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APPENDIX A: DERIVATION OF THE FITZGERALD EQUATIONS

Determine the distribution function of reflected particles, given an incident stream of

particles with a drifting Maxwellian distribution,

~(£,-U)?
2RT,

n

Ji = GarTy?

The particles impinge on a surface with known accommodation coefficients, defined as:

(AD)

exp

E-|E P-|P -
a = i I rI O_n - i | r| , 0_7 - Tl |Tr| (A2)
E-|E,| P-|P,| 7

where the fluxes are considered to be scalar quantities. The reflected distribution is

2

assumed to be the drifting Maxwellian distribution, with the unknown parameters of particie

speed, direction, and temperature.

£ (A3)

n, -¢,-U)
= €X
@=RTY" ©| T 2RT,

The vector sum of incident and reflected particles is assumed to be zero: N, + N, =0,

PR
|
~ , |A

Fig. A1 Geometry and coordinate system for
area element.

Define the direction cosines for the velocities in Fig. Al:
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go= oy LS
U |U,|
¢i = Qi'ﬁz ¢r = (_],. AZ
IUzl IUr|
U-n U -
6=+ ¢ =_"°
| U] |U,|

Then the total velocities can be written:
_ﬁ‘. = (YU + (@ U+c)n, + (BU, +c))i,
(A4)

g— (-ll/rUr+Cl)ﬁl + (¢rUr+C2)f'2 + (OrUr+C3);’3

r

£ =cm + G, + Gy

Or, if the coordinate system has been chosen so that the incident velocity vector is in the
1,2 plane, then 6, = 6, = 0, and:
g.‘- = (‘p,‘Ui"'Cl)ﬁ] + (V l_‘)blz U‘.+C2)‘ﬁ2 * C3ﬁ3

(-4, U+c)i, + (J1-Y:U.+c,)h, + ¢,

£

r

g

w

Cm Gy + Gy

The number flux of incident particles on a unit area per unit time:

No= ] L] e a, e,

. ni ® ™ —_(,:2

2 2 2
. n. o _Cl o™ —Cz o -C3
N U, I P2 d R P
' (21rRT,-)3’ZI wlPUedexp 2RT,.] J -me’(plzRT, | -wexP[2RT] “

Ui
After integration, and since S; = —
mp
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172
. kT, AS
N, - n{—] (/7 v 1verfyS) + exp(-vish) B>
2am
For the number flux for all reflected particles:
. 0 o o
No= ]| e dg d,
. n v U ) ® —C2
N =—"__1" -y U — | dc, dc, dc
r (27FRTr)3,zj‘°° I-mj—w( ¢r ,+C,)exp 2RTr 3 UG, dCy
n U —C2 - 22 —Cg
N =—__"* _[|"(yU L lde, [T e de,(” dc
’ (21rRTr)3’7J o (W Ure)exp 2RT, ‘j P 2RT. 2J -7 2RT. |
After integration and substituting as in (AS), the particle flux is:
12
. kT
N, = —n,[ ] V7 v, (1verfy,s) + exp(-yisD)]
27m
Substitute into particle conservation and solve for the number density, n,:
4 N 1R
kT,
n| L | [VxvSvertys) + exp(-yish)
n = 27m
r r Y12
kT
* | VxS ery,s) + exp(-yish)
| 21m )
172
T, | JxyS(l+erfyS) + exp(-y2SH
n_ =n, i i i (A6)
T.) VxyS(l+erfy,s) + exp(-ySH

Number density of particies emitted diffusely from wall:

n
= s ex
& @eRTy" 7

2RT,

For the case of diffuse emission, S, = 0, since U, = 0, then:
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n, = n[_TT_] V7 v s(arertys) + exp(-yish] (A7

Pressure due to the flux of particles on an element of surface:

Po=m [ ]| g fdEsde,dt,

mn.

i o= o o Cz
P, = WJ"%U.l‘”J"m(%Ui+C) exp[ZR ]dc3 dc, dc,

p-__"™ (- (¢U+c )2 ex _—cf de, [ 7 ex G dc ex —__C32 dc
i (21rRT)3’2.[ YitG P 3RT. lj_w p 2RT, 2[ p 3RT, 3

P, = nkT, |:(-J/fS,-2+%)(1+erf\/z,S,.) + %_ﬂexp(—waf)jl (A8)

T

Resultant pressure from momentum of reflected particles:

P=m | de|"ag,| " s,

mn

r ¢’Ul oo -3 _g'l
P = ke | o] LU e [ﬁf] dey e, de,

S Uscpexp| 5 e, AP % |
T2 RT)mJ U wc)? exp 2RT, 6, | %P | app i | exp 2RT, |
— 2¢2 1 \l/lsr _g2¢? A9
P, = nAT.| (S 1)(1verty,5) + ¥2rexp(-yis?) (A9)
i Vr

Pressure due to diffusely emitted particles:

Po=m [ [ 7 de,[ " gifde,

P e ] |

w

] dc, dc, dc,
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2 P 2
mn 0 2 _Cl [ ] _C _C
P = " —|d d d
. (27I‘RTW)3lzj VP IRT o[ e [ 2RT, af o [ 3RT, | °©
_ AT, (A10)
¥ 2
Shear stresses at the surface due to incident flow:
T, = m[o j_ml_mglngid%dfzdgn
mni ® o o —22
T, = W [ -W‘J-mj-m(¢‘U‘+C‘)(¢"U‘+CZ) expl 2RT}] dc, dc, dc,
2 2
mn. oo - -C
T, = __'__j exp | — dc3j exp| — | x
& (2'71'RT|.)3”2 -0 2RT - U, 2RT,
' 2
™ -C
I _w(¢i¢iU,-2 +€,0,U+c,0,U ¢ c)) exp [W;‘] dc, dc
2 Si 262
Ty = nkTo, | S;(L+erfyS) + ——exp(-y;S;)
‘ yr
and 7, = 0, since §, = 0
If a substitution is made for ¢; = 1-\1/.?, then:
2172 2 Si 22 All
7, = n.kTi(l -¥i) vSi(l+erfyS) + Texp(_wisi) ( )
T

Shear stresses due to reflected particles:

0

e

mn’_ VU o o C2
Ty = ij j_mj_w(—xﬁrUrwl)(darU +C,)) exp[ SRT ,] dc,dc, dc,
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¢
2RT,

mn_ m
T, = —.j exp
- 0o

2
vU =€)
dc ex X
", (27rRTr)3’2 3 [ —o P [ 2RTr]

-
—— | dc,dc,
2RT,

I -Z(—¢r¢'U3 +Cl(brljr_("2¢'rljr+clc'2) exp

m,
T

7. = -nkT9, {w,sf(herfw,) + JSLexp(-\&ESE)}

and 7. =0, since 8 =0
m, r

If a substitution is made for ¢, = \/1-503 , then:

7, = -nKT(1-y)" [¢§3(1+erf¢;,) + ‘Sr’exp(—:ﬁiSS)} (A12)

T

For diffusely emitted particles, since S, = 0, there is no contribution to the shear forces:
r. =7 =71 =0 (A13)
For the flux of incident energy at the surface, the internal energy for each degree of

5.
freedom (DOF) is skT;. For a perfect gas, DOF = ——;;1 The incident energy flux is:
2 P T y

b e e 2 5

£ B e, ()

[

2 J,ZI_:Elﬁdssdgzdf,

0

, . o KT, [ 5-3y
The second term, internal energy, is equal to N‘T e R or:
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12
nkT. | kT. B Ald
Ey = —|5— [\/; yS(L+erfyS) + exp(_¢353)] 5-3v (Al4)
: 2 | 2%m 51
E = _LJ"’ jmjm(¢.U.+C)(U?+2C U<‘J/-+2C U. 1‘\,&-2+C2+C2+C2) x
{ 2(27TRT:.)3/2 -, . i 1 { 1Y Y f i 2 3

-c
exp [E'R:T"] dc,dc,de, + E\,

172
kT,
E, = n‘kTi[ﬁ] [ﬁ ‘J/lS‘.(S,-Z+%)(1+erf¢‘Si)+(S,-2+2)exp(—\,be,»2)] + Epr (A1)
7r ]
~ The flux of energy from all the reflected particles is:
0 -3 o0 1 kT 5_3
E - —mg?e O 22V fdg dEd
’ I-wj-mj—cngl[zmg ¥ 2 [ ’y—l ]]fr ES Ez El
B, = [ [ Tegndedede, « ot [320] (1 [ [ esdeiaae
r 2 cos | oo _ml r 3 2 t 2 'Y_l I R Wvr 3 2 1
.. o KT 5-3
The second term is internal energy as before, N’T W , Or:
_ -nkT, | k (A16)

172
T N _n2enlf 5-3y
EINI', ) L Sam ] [‘/; v,5(1 +erfy, S) + exp( \L,S,)] [ W ]

mn, YU @ ¢ o 2 2 2 2 2
E, = s o | o WU e) 20U g, 20U 1 v vl e
x , - J - 00 >4

'
exp [ﬁ] dcydc,de, + E\;

kT,
2Tm

(AL7)

12
E, = —nJcT,[ ] [ﬁ ¥,5,(57 +2)(L+erf(¥,5,)) +(S; +2)exp(-¥;S)| + Epr

The energy flux from a surface element with diffuse emission:
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2 2 | y-1

P

E, - ["{“’j“s,[l'rng“@[ﬁf £.d5,dE

I B e e I

: o KT, (5-3]
where the internal energy term is N"T [—‘Y—‘T , and since S, = O:
12
_ -nKT, | kT, 5-3y (A18)
W, T | 2am v-1

mn 0 w oo 5 2 2 —_(/:2
E, = ——F— ¢ (cy+c; +¢3)exp| — | de,dc,dc E
w 2(2iRTw)3QJ_mj_m[_m 1( 116G + 3) pl 2RT’] ,ac,ac, + INT,

172
E 2n kT KL, E
= - n +
w wo T w 2am INT,

172

kT

E, - -nwkT[ w] [ y+1 ] (A19)
Y| 2am 2(y-1)

Create a set of equations to solve for the desired quantities 7,, S,, ¥,. Rearrange

accommodation expressions, (A2), and set equal to zero.
F, =0=(-0) - |7,
F,=0=(-0)P, +0,|P,| - |P,]
F, =0 = (1-a)E, + «|E,| - |E,|

Substituting (A11) and (A12) into F,:

T

F, = (1-0)nkT(1 -y} [w,sf(herw.sg + j-Lexp(—\b?S?)] -

T

n kT (1-y)1? [w;ﬁu«»erwg ¥ j;exp(—ﬁsf)}



61
Or, after substituting (A6) for n, and simplifying:
F, = 0 = (1-0)SIT(L-yDI'"* - S[T,(1-yP1'” (A20)
To make the expressions more concise, define the quantity:
X(¥,5) = V7 YS(L+erfyS) + exp(-y'S?) (A21)
Substituting (A8), (A9), (A10), and (A21) into F,:

F, = (1-0,.)11—"/](; [—‘/;(Herf%&) + ¢,Six(¢,-,5.~)] * Unn”kT" -

- 2
nkT,

yr

Substituting (A6) for n, and simplifying:

F, = (1—an)[ rh QeethS) w.&} co T

2 x(S) 2

[JE (Lverfy,s) \/;%5,}

2 x(,S5)

g(l verfy S) + ¢,S,x(¢,,5,):|

(A22)

Substituting (A14), (A15), (A16), (A17), (A18), (A19), and (A21) into F;:

12
F, - (1-a)n;a,.[ﬁ] [gma+erf¢.s..)+(s?+2)x(¢i,sf) : [ﬂ]x(%sg} N

2xm 2(y-1)
172
kT
anwkTw[_‘."_] [ v+l

2xm 2(v-D)

12
kTr ﬁ + + 2+ + 5"37
nAT, ml [T‘W‘ erf,5) +(STDx($,.5) [2 (7_1)]x(¢,,5,)}

Or, after substituting (A6) for n, and simplifying:
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. Vrys, (lverfyS) 5-3 v+l
F, - (1_0,)7,.[ - (522 + . aTw[ ] - a2

2 X(‘lbps,') 2(7—1) 2(7_1)
r ﬁ¢;,(1+erfw,>+(53+2) . 5-3y
27 x(¥,5) 2(v-D

Form an objective function from F,, F,, F;:

i = F B+ F (A24)

The objective or "cost” function can be solved by a nonlinear optimization technique. J
can be minimized given the input values of o,, o, o, T, ¥, S;, v, and T,. These quantities
are known from material properties, atmosphéric data and the geometry of the problem.
Minimization results in the desired values of y,, S,, and T, necessary for the determination

of the distribution of the stream reflected from a surface.
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APPENDIX B: VERIFICATION OF REFLECTED FLOW PROPERTIES

After experimenting with the optimization process to determine the properties of the
reflected flow from a surface, it was apparent that choosing a random set of
accommodation coefficients for energy and momentum would not insure a correct solution.
There were apparently certain "sets" of accommodation coefficients that could yield correct
solutions. Two issues needed an answer. The first was whether or not the reflected
propeﬁies from the minimization were an adequate solution to the set of equations. The
second was whether or not the solution was reasonable or even physically possible.

To determine if the minimization was finding global minimums in the solution of
the set of conservation equations, the value of tﬁe cost function itself could be monitored.
A series of tests were carried out with the optimization program to try various combinations
of accommodation and find out what the cost function looked like. A set of input
conditions was chosen and a fixed energy accommodation value was selected. The
tangential and normal momentum accommodation coefficients were then cycled through 0.0
to 1.0, and a surface of the cost function was generated. From the cost surface and for
each value of energy accommodation, a region of normal and tangential accommodation
that produced a low cost function could be determined. For this purpose, any solution that
produced a cost value of 10* or less was considered to be an adequate solution.

If the optimized re‘ﬂected quantities could be compared to another known solution
to the problem, it could be determined if the solution was physically reasonable. In gas
kinetics, there is an expression for the pressure due to the stream of gas particles reflected

from a surface. Using the reflected distribution:
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T
P, = ’[M,exp(-%sf) VTS + Ha + erfw,)]
Jr

(B1)

T, [eXP(—¢?S?) v Ty S+ erfl/,‘sl.)]

’ [exp(—ll/fsf) + wy,S(L + erfy,S ’)]

There is also an expression that calculates the resultant pressure of the reflected flow using
the incident and wall conditions and accommodation coefficients. The resultant pressure,

using the accommodation method:

P - l:wlsiexp(*\bfsf) LTS + DA+ erf¢,S,->]

K3

~———

P, - % = fexp(vish + VTusQL + ertyis))

w

(B2)

N

P

n

(1~-0)P, + 0P,

where both pressure expressions have been divided by nk to simplify the expressions. By
looking at a surface generated by the ratio of the pressures, P,/P,,, a contour where the
pressure ratio is 1.0 can be picked out.

To get an idea if the optimization was producing valid answers for the reflected
properties; the regions of low cost function were overlaid with the contour of unit pressure
ratios. Figures Bl through B9 show the correspondence between the regions of low cost
function and the unit pressure ratio for an incidence angle of 20°.

Several things can be learned from the results. There is evidence that the
accommodation coefficients may actually be a function of the angle of incidence of the

impinging flow, as suggested by several investigators. For the cases with a 20° angle
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between the surface normal and flow in Figs. Bl through B3, the tangential momentum

accommodation coefficient does not seem significant, but the normal accommodation takes

on a small range of values, linked to the energy accommodation.
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The cases with an incidence angle of 45° in Figs. B4 through B6 show that the

normal and tangential accommodation are both nearly equally significant. Again, the

energy accommodation is linked to the range of momentum accommodation values that are

"possible”.
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Figures B7 through B9 show the regions of low cost function and pressure ratio of
1.0 for an incidence angle of 70°. The results are similar to the 20° case in that the
component of momentum in a direction that is not close to the incident flow is not as
significant as the momentum direction that is closer to the incident direction.

To choose a set of accommodation coefficients for this investigation, it was desired
to have accommodation values that would stay in the low cost region for the entire range
of angles of attack. It was found that an adequate set of accommodation coefficients would
likely have nearly equal tangential and normal momentum accommodation, and an energy

accommodation coefficient that was slightly greater than the momentum values.
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